a2 United States Patent

US009111392B2

10) Patent No.: US 9,111,392 B2

Andersson et al. 45) Date of Patent: Aug. 18, 2015
(54) STOCHASTIC DEPTH BUFFER USPC i 345/422, 423, 643, 644
COMPRESSION USING GENERALIZED See application file for complete search history.
PLANE ENCODING
(71) Applicant: Intel Corporation, Santa Clara, CA (56) References Cited
(Us) U.S. PATENT DOCUMENTS
(72) Inventors: Magnus Andersson, Helsingborg (SE); 6,956,576 B1 10/2005 Deering
Carl J. Munkberg, Malmo (SE); Tomas 8,080,486 B2~ 1/2012 Anderson
G. Akenine-Moller, Lund (SE); Jon N. 2012/0212489 Al 82012 Fisk
Hasselgren, Bunkeflostrand (SE) OTHER PUBLICATIONS
(73) Assignee: Intel Corporation, Santa Clara, CA Munkberg et al. “Hierarchical Stochastic Motion Blur Rasteriza-
Us) tion”, HPG 2011, Vancouver, British Columbia, Canada, Aug. 5-7,
. 2011; 2011 ACM 978-1-4503-0896-0/11/0008.*
sk .]
(*) Notice: SubJeCt. to any (?;S(Cilalmeé,. the Iiermefthls Andersson, M., et al., “Depth Buffer Compression for Stochastic
patent is extended or adjusted under 35 Motion Blur Rasterization,” In Proceedings of the ACM SIGGRAPH
U.S.C. 154(b) by 196 days. Symposium on High Performance Graphics, Aug. 2011, pp. 127-134.
Gribel, C. J., et al., Analytical Motion Blur Rasterization with Com-
(21) Appl. No.: 13/721,163 pression. In Proceedings of the Conference on High Performance
Graphics, (Jun. 2010 . 163-172). Eurographics Association.
) phics, () (pp) grap
(22) Filed: Dec. 20, 2012 (Continued)
(65) Prior Publication Data
US 2014/0085300 A1 Mar. 27, 2014 Primary Examiner — Maurice L McDowell, Jr.
(74) Attorney, Agent, or Firm — Trop, Pruner & Hu, P.C.
Related U.S. Application Data
(60) Provisional application No. 61/706,177, filed on Sep. 67 ABSTRACT
27,2012.
’ Unlike a static primitive, where the depth function is planar,
(51) Int.CL the. depth fungtior.l fo.r a moving and defocused triangle is a
GO6T 11/40 (2006.01) rational function in time and the lens parameters. Compact
depth functions can be used to design an efficient depth buffer
GO6T 9/00 (2006.01) b esignan p
GO6T 15/40 (2011.01) compressor/decompressor, which 51gpl.ﬁcantl.y lowers total
(52) US.Cl depth buffer bandwidth usage. In addition, this compressor/
CPC ‘G06T 11/40 (2013.01); GO6T 9/00 (2013.01); decompressor is substantially simpler in the number of opera-
’ e GO6T 15/40 (2013' 01)’ tions needed to execute, which makes it more amenable for
(58) Field of Classification Search ’ hardware implementation than previous methods.

CPC ... GO6T 15/405; GO6T 15/20; GO6T 11/40;
GO6T 15/40; GOGT 9/00

10

\

12

(

RASTERIZER

30 Claims, 4 Drawing Sheets

DEPTH CACHE |

COMPRESSOR |14

CONTROL

(

11

TILE TABLE

(

18

US 9,111,392 B2
Page 2

(56) References Cited
OTHER PUBLICATIONS

Hasselgren, J., et al., “Efficient Depth Buffer Compression”, In SIG-
GRAPH/EUROGRAPHICS Conference on Graphics Hardware:
Proceedings of the 21 st ACM SIGGRAPH/Eurographics sympo-
sium on Graphics hardware: Vienna, Austria, (Sep. 2006), (vol.3, No.
04, pp. 103-110).

PCT International Search Report and Written Opinion issued in
corresponding PCT/US2013/048034 dated Jan. 29, 2014, (11 pages).

Gribel, Carl J., et al., “Analytical Motion Blur Rasterization with
Compression,” In Proceeding HPG, 10 Proceedings of the Confer-
ence on High Performance Graphics, Switzerland: Eurographics
Assocaition Aire-la-Ville, 2010, pp. 163-172 (10 pages).
Hasselgren, Jon, et al, “Efficient Depth Buffer Compression” In
Proceeding GH ’06 Proceedings of the 21st ACM SIGGRAPH/
EUROGRAPHICS Symposium on Graphics Hardware. USA: ACM
New York, NY 2006, pp. 103-110 (8 pages).

* cited by examiner

U.S. Patent Aug. 18, 2015 Sheet 1 of 4 US 9,111,392 B2

10 16
N DEPTH CACHE P
12
(
RASTERIZER COMPRESSOR f—14
CONTROL TILE TABLE
((
11 18
20

RECEIVE TRIANGLE — 22

Y

RASTERIZER SET UP |24

Y

STOCHASTIC RASTERIZING | 26

Y

TILE DEPTH COMPRESSING |—— 28

Y

FIG. 2

U.S. Patent Aug. 18, 2015 Sheet 2 of 4 US 9,111,392 B2

O
, A ®
@)
®) O ol | C
O o
o P a
O
@) © O)O
y @)
D
O O
© @)
x MOTION BLUR
FIG. 3

DEFOCUS BLUR

US 9,111,392 B2

Sheet 3 of 4

Aug. 18, 2015

U.S. Patent

09€ G 9l
0EE~ e~ 3INaOW 40SS3008d OL 4/11 ¢LE
(S)301A3 o8 31VddN J4VMAYIS NILSAS Uoye
SI0INY3S \ ~N Fuvmwa ONILYHIdO
INIINOD | [[Au3LLve
N3LSASENS B
61— ool dvHD o b E2€yossInoud 0t
(91301A30
AYIAMIQ o16 —ASNOILYINddY| [13sdiHof~ 908 [sgo}—Tee
IN3LNOD
g y1e —{39VH01S olavy |~ 8¢ [awomaw}—CI¢
oy
s)
YNNIINY (Z08) WYO4LY1d
oz € Fovaaini wasn . ‘

AV1dSIA

U.S. Patent Aug. 18, 2015 Sheet 4 of 4 US 9,111,392 B2

400~ 408
410 404
402~ D
(:(%D N1
{406

FIG. 6

US 9,111,392 B2

1
STOCHASTIC DEPTH BUFFER
COMPRESSION USING GENERALIZED
PLANE ENCODING

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims priority to provisional application
Ser. No. 61/706,177 filed Sep. 27, 2012 hereby expressly
incorporated by reference herein.

BACKGROUND

Depth buffering is the standard technique to resolve vis-
ibility between objects in a rasterization pipeline. A depth
buffer holds a depth value for each sample, representing the
current closest depth ofall previously rendered triangles over-
lapping the sample. The depth value, d, can be defined in a
number of ways.

In a stochastic rasterizer with many samples per pixel, the
depth buffer bandwidth requirements are much higher than
usual, and the depth data should be compressed if possible.
Most depth buffer compression schemes exploit the fact that
the depth values from a triangle can be represented by a plane.
Unfortunately, for moving and defocused triangles, this is no
longer true.

In a static (2D) rasterizer, the depth function can be
expressed as a plane. This is exploited by many depth com-
pression schemes. Plane encoding is different from other
algorithms because it exploits information coming directly
from the rasterizer, and therefore uses the exact same plane
equation representation in the compressor as in the rasterizer.
The depth information is stored as a set of planes and a
per-sample plane selection mask for each tile. When there are
few triangles overlapping a tile, storing the plane equations
and selection masks is more compact than simply storing the
per-sample depth. However, when too many triangles overlap
a tile, the storage cost of multiple depth planes is higher than
directly storing the per-sample depth values. For each tile,
depth compression may then be disabled, or another compres-
sion algorithm applied (which usually cannot compress as
well as plane encoding).

While plane encoding is very useful for static, two-dimen-
sional rasterization, it does not suffice to use static planes for
higher order rasterization, where the depth function is more
complex.

BRIEF DESCRIPTION OF THE DRAWINGS

Some embodiments are described with respect to the fol-
lowing figures:

FIG. 1 is a schematic depiction for one embodiment;

FIG. 2 is a flow chart for a sequence according to one
embodiment;

FIG. 3 is adepiction of motion blur for 4x4 pixels with four
samples per pixel indicated by four layers;

FIG. 4 is a depiction for defocus blur;

FIG. 5 is a system depiction of one embodiment; and

FIG. 6 is a front elevation view of one embodiment.

DETAILED DESCRIPTION

Plane encoding may be generalized to include stochastic
effects, such as motion blur and depth of field. The depth
function coefficients are computed in the rasterizer and are
passed to the compressor. A standard plane encoding uses
three coefficients per depth function (i.e., a plane) on the form

10

15

20

25

30

35

40

45

50

55

60

65

2

d=A*x+B*Y+C, to represent the depth of a triangle. When
the triangle undergoes stochastic effects such as motion blur
and depth of field, the depth function is no longer a plane.
However, we can still derive a depth function on the form
d=t(x, v, u, v, t) by storing more coefficients per triangle.

The benefits of this method include, in some embodiments,
a compression algorithm that is substantially more efficient
than previous methods. This is made possible by providing an
analytical representation of the depth function directly from
the rasterizer setup, avoiding the cost of finding a lower order
representation in the compressor, as in previous methods.
Unlike previous plane compression methods, this method is
well suited for motion blur and depth of field effects, and does
not break down for these cases. Furthermore, since this
method operates on an analytical representation, it may work
equally well for floating point precision depth buffers in some
embodiments.

The mathematical expression for the depth functions may
be analyzed in the case of motion blur and depth of field.
Although the expressions may appear somewhat compli-
cated, they can be effectively simplified, and compact forms
for the depth functions can be used to design algorithms with
substantially better average compression ratios for stochastic
rasterization.

In general, the compressors and decompressors exist in a
depth system. Compression/decompression is applied to a
tile, which typically is the set of depth samples inside a
rectangular screen-space region.

Suppose we have a triangle with clip space vertex positions
P=0s,PrsPr), ke{0,1,2}. In homogeneous rasterization,
the two-dimensional homogeneous (2DH) edge equation,
e,=n,'x, corresponds to a distance calculation of an image
plane position, x=(X, y, 1), and the edge plane, which passes
through the origin, with, for example, n,=p,xp,.

An arbitrary per-vertex attribute, A,, may be interpolated
over the triangle. Each of the barycentric coordinates, By, B,
B,, ofthe triangle can be found by evaluating and normalizing
the corresponding 2DH edge equation, such that

€k

_€0+€1+€2.

The interpolated attribute, A, for a given sample point, X, can
then be found by standard barycentric interpolation:

®

Apeo + Are; + Arer

A%,)=) AcBi=

ep+er+er

The depth value, d, is formed by interpolating z and w indi-
vidually, and then performing a division:

g _any) ZZkBk _ ZZkek @
= wx,y) T IweBe T T wee
If we look at the denominator, we see that:
3)

ZWkek = (Zwkpixpj)'x
= (0,0, det(py, pi, pj))- (%, y, 1)
= det(py, pis pj),
which is independent of (x, y). This is six times the signed
volume of the tetrahedron spanned by the origin and the

triangle, which can be used to detect if a triangle is backfac-
ing.

US 9,111,392 B2

3
If we use a standard protection matrix, such that the transfor-
mationof(z_,,,,1) to clip space (z,w) can be expressed as (c.f.,
the standard Direct3D projection matrix):

z=az ,+b, w=z

cam

*
then the depth function can be simplified. The coefficients a
and b depend solely on z,,,,,, and z,,,. Combining Equations 2

and 4 and simplifying gives us:

cam>

®

bz ey

2 wiex

iy at
wix,)

dix, y) =

We have now derived the 2D depth function, which is widely
used in rendering systems today. However, Equation 5 can be
augmented so that it holds for depth sampled in higher dimen-
sions. For example, adding motion blur and depth of field
means that z, w, and the edge equations are functions of
shutter time, t, and lens position, (u, v). Thus we can write the
depth function on a more general form:

©

bz er(X, ¥, ...)

a+ 5
2w,y e (% ys)

dix, y,...)=

where . . . should be replaced with the new, augmented,
dimensions.

For higher-order rasterization, including motion blur and
defocus blur, static plane equations are not suitable to repre-
sent the depth functions, because the depth functions are
much more complex inthose cases. For motion blur, the depth
function is a cubic rational polynomial, for example. There-
fore, the plane encoding method is generalized in order to also
handle motion blur and defocus blur.

The generalized plane encoding (GPE) algorithm is nearly
identical to static plane encoding, except that the plane equa-
tions for motion blurred and/or defocused plane equations use
more storage, and that the depth functions are more expensive
to evaluate. This can be seen in Equation 6, which is based on
more complicated edge equations, e, and w,-components.
However, the required number of coefficients for specific
cases can be substantially reduced, which makes it possible to
fit more planes in the compressed representation. This in turn
makes for higher compression ratios and faster depth evalu-
ation.

Similar to static plane encoding, the compression repre-
sentation for generalized depth (motion and defocus blur, for
example) includes a variable number of generalized plane
equations, and a plane selector bitmask per sample. If there
are at most n plane equations in the compressed representa-
tion, then each sample needs [log n] bits for the plane selector
bitmask. Next, we simplify the depth functions for higher-
order rasterization.

We begin the depth function derivation for motion blur by
setting up time-dependent attribute interpolation on matrix
form. Then, we move on to reducing the number of coeffi-
cients needed to exactly represent the interpolated depth of a
triangle.

One approach to store the depth functions for a motion
blurred triangle is to retain all vertex positions at t=0 and t=1,
which are comprised of a total of 4x3x2=24 coordinate values
(e.g., floating-point). If the projection matrix is known, and
can be stored globally, then only 3x3x2=18 coordinate values
are needed, as z then can be derived from w, using Equation 4,
for example. In the discussion below, we show how the depth

10

20

25

30

40

45

55

60

4
function can be rewritten and simplified to contain only 13

values, which enables more efficient storage.

In the derivation below, we assume that vertices move
linearly in clip space within each frame. Thus, the vertex
position, p,, becomes a function of time:

PO =qrtid], @]

where d, is the corresponding motion vector for vertex k.
Since the vertices depend on time, the 2DH edge equations
form 2nd degree polynomials in t:

e =P Oxp)X =+t), ®)

where

=q:xq;, 8p=qxdrdxq;, fr=dxd,. 9

For convenience, we rewrite the edge equation on matrix
form:

e (%, ¥, 1) = nCaT, (10)
where

—hy -

—& — |,

_fg —

Cy =

and t,=(1, t, t*), x=(x, y, 1), and C, is a 3x3 matrix as shown
above.

By combining the matrix notation and Equation 1, we have
a general expression of how to interpolate a vertex attribute,
A, over a motion blurred triangle:

an

12(2 A Ck)xT.

Ay 0= ==

However, if the attribute itself varies with t, e.g., A, ()=
A%+tA, ¥ we obtain a general expression for interpolating a
time-dependent attribute over the triangle, with an numerator
of cubic degree:

(Cox (12)

= [22 CkxT

12(2 (A9 +1ADC AT

Alx.y. 0= o

where t=(1, t, t2, t°), and the vertex attributes, A, are multi-
plied with each C, and summed to form the 4x3 coefficient
matrix C,. This form may be used to interpolate the w
attribute at the pixel center.

clip

To compute the depth function

Il

we perform barycentric interpolation of the z- and w-compo-
nents of the clip space vertex positions, which are now linear
functions of t, e.g., Z(t)=q,+td, and w(t)=q, +td,,.

US 9,111,392 B2

5

Let us consider the depth function, d(x,y,t):

4 Z2(x, ¥y, 1) 12(2 (qr, +1d,)Cy)XT 1Cx" 13
3D = 3D~ B, T)G IO

Where the 4x3 matrix:

0 0 0 (14)
C; = Z qr,| Gk +d| G ,
0 0 0
Ty (o

and the 4x3 matrix C,, is defined correspondingly. We now
have the depth function on a convenient form, but the number
of coefficients needed is no less than directly storing the
vertex positions. We will now examine the contents of the
coefficient matrixes, C, and C,,, in order to simplify their
expressions.

Using equation 14 and the definition of C,, we can express
the first and last row of C,, as:

Crog=25 1 =24, 9:x9;7~0,0,det(9,,9,.9,),

C,,=2dy fi=2d, dixd—~0.0,det(d;,), 1s)

where, in the last step, the terms cancel out to zero for the x
and y-components. The two remaining rows look a bit more
complex, but with a similar derivation and simplification, we
obtain:

Cyy = Z Gy Gk + i, i
= Z Gu, (di X g+ Xdj) + dy, (g X q;)
=(0,0,), det(d, gi» 4,):

Cuy = 2 i, fo+ di,gi = (0,0,) detlgps di,)

Using these expressions, we can formulate tC,x” as a qua-
dratic function in t independent of (x, y):

1C, ¥ T=Ag+A 1+ AP +ALE, (16)

where:

Ap=det(qy, 4, q)).

A,=2det(d,, q,, qj)

A,=2det(qy, d;, d)

A;=det(d,, d,, d)).

Expressed differently, the denominator tC, x” is the backface
status for the moving triangle, e.g., det(p,(t),p;(t), p,(t),
which is independent of (x, y).

As a result of these simplifications, we reveal that tC x
has no dependency on x and y and is reduced to a cubic
polynomial in t, needing only 4 coefficients. Thus, with this
analysis, we have shown that the depth function can be rep-
resented by 12 (for C))+4 (for C,)=16 coefficients, which
should be compared to the 24 coefficients needed to store all
vertex positions. This formulation is substantially more com-
pact.

If we use a standard projection matrix, according to Equa-
tion 4, we can simplify the depth function further. If we return
to Equation 14, and insert the constraint from the projection
matrix, i.e., q,=aq,,+b and d.=z, -7, =ad,,, we obtain:

ra

C,=2(q;, Ci+), C)=2((aqy, +b)Cytady, Cr)=aC, +b%
Ty an

10

15

20

25

30

35

40

45

50

55

60

65

6

We combine this result with Equation 13 to finally arrive at:

(18)

i’ aCy + bz Cep” ~

dx, y, 0 = 1C,xT 1C,xT
Cilx™ Ce "
a+bt(z k)x =a+b IZ(Z k)x
1C,xT Ao+ At + A2 + A3

As can be seen above, we have reduced the representation
of'the depth function from 24 scalar values down to 13 (with
the assumption that a and b are given by the graphics appli-
cation program interface (API)).

Next, we consider an extra optimization for the special case
of all three triangle vertices with a common motion vector,
e.g., pure translation. In the examples below, we assume that
a standard projection matrix is used (i.e., Equation 4). The
transformed clip space position, p'=(p,, p,’, p..), of each
triangle vertex is: p'=p+d, where d=(d,, d,,d,,) is a vector in
clip space (xyw).

With all motion vectors equal for the three vertices of a
triangle, we can derive a simplified depth function. Note that
the coefficients f,=0, and

det(d,, d,, d)=det(d, d, d)=0

det(q,, d,, d)=det(q,, d, d)=0.

Furthermore, it holds that:

2.g,=2dx(q;-q:)=dxZ(q,~4,)=0.

The depth function can then be simplified as:

(19)

S 20

d(x, y, t):a+bA0+A1[

We have reduced the representation of the depth function
from 18 scalar values down to 5 (again with the assumption
that a and b are given by the graphics API).

There are not as many opportunities to simplify the depth
function for defocus blur as there are for motion blur. If we
simply store all vertex positions, then 4x3=12 coordinate
values are needed. If, however, the projection matrix is
known, the number is reduced to 3x3=9. We assume that the
camera focal distance and lens aspect are known globally. In
the following section, we will show how to reduce the storage
requirement of the depth function to 8 scalar coefficients for
a defocused triangle.

When depth of field is enabled, a clip-space vertex position
is sheared in xy as a function of the lens coordinates (u, v).
The vertex position is expressed as:

p=q+cu’, (21)

where c is the signed clip space circle of confusion radius,
u'=(u, Eu, 0), and & is a scalar coefficient that adjusts the lens
aspect ratio. We use these vertices to set up the edge equa-
tions:

ep(x, y, u, v) = (pi(u, V)X pju, v))-x
=(giXqj+u X(ciq; —cjg))-x

= (hy +u’ Xmy)-x,

where we have introduced m;=(c,q,—c,q,) and h,=q,xq, to
simplify notation. With u=(u, kv, 1), we can write the edge
equation on matrix form as:

US 9,111,392 B2

ex(x, y, uy v) = uCix’ 22)
where:

0 —-my, my, (23)
Cy = | My, 0 —My,

h by fy

Analogous to the motion blur case, we can express the
depth function as a rational function in (x, y, u, v) as follows:

Z2(x, y, i, V) uCZxT 24)

d(x, y,u, v) =

wix, v, ty V) uCyxT’

where C.=2q, C; and C,=2q, C;. By combining the obser-
vation that:

Zqp, M, =2q, (€45, ~ 45,)70, (25)

and the top row in Equation 15, C,, is reduced to a single
column, similar to the motion blur case. Thus, the denomina-
tor can be written as:

00 quwmkwu (26)

uCx’ = 00 —Zkamkva X7 = Ay + Ay + Ag,

0 0 detlgo, g1, 92)

Again, this is equal to det(p,(u, v), p, (u, v), p(u, v)), which
is also the backface status for a defocused triangle.

If we introduce the restrictions on the projection matrix as
in Equation 4, then C, can be expressed in the following

manner:
C.=2gq;, C=2(aqy, +b)Cr=aC +b2C;. 27

It we further assume that the clip-space circle of confusion
radius follows the lens model, it can be written as c,=op;, +f.
With this, we see that:

kaw = Z (cipj, —<jpi,)
= Z ((api, + Bpj, — (@pj, + Bpi,)
= “Z (Piy Py = Py Piry) +ﬁ’2 (Piy = Piy) =0,

and 2C, takes the form:
0 0 Dim, (28)
Z co=| o 0 —Z M,
Sk Ty S
With this, we have shown that:
uC,x’ th'x"'zmkyu—zmkva 29
dx, y, u, vy = uC,,xT =a+b Au+Ayw+Ag

which can be represented with 8 scalar coefficients (given that
a and b are known). The denominator is linear in each vari-
able.

10

15

20

25

30

35

40

45

50

55

60

65

8

The algorithms may be implemented in a software or hard-
ware rasterizer augmented with a depth system containing
depth codecs (compressors and decompressors), a depth
cache, culling data, and a tile table. To reduce the design
space, we chose a cache line size of 512 bits, i.e., 64 bytes,
which is a reasonable and realistic size for our purposes. The
implication of this choice is that a tile, which is stored using
512-n bits, can be compressed down to 512-m bits, where
1=m<n in order to gain bandwidth usage. It should be noted
that any practical cache line size can be used, and 512 bits is
just used as an example.

Thus in some embodiments, a graphics pipeline 10 shown
in FIG. 1 may include at least a rasterizer 12 which may be
software or hardware based. It provides depth function coef-
ficients to a compressor 14. The compressor 14 gets depth
data from a depth cache 16 and tile information from the tile
table 18. The compressor 14 and rasterizer 12 may be con-
trolled by a control 11 in some embodiments. The control
may be a processor or controller as examples.

Even though motion blur is three-dimensional, and defocus
blur uses four dimensions, the same tile notation may be used
for both these cases in order to simplify the discussion. An
explanation of our notation can be found in FIGS. 3 and 4. In
FIG. 3, motion blur for 4x4 pixels is shown where there are
four samples per pixel indicated by the four different layers.
In total, there are 4x4x4 samples. If n layers are used as the
tile size for compression, then we denote such a tile as 4x4xn.
As an example, if each layer is compressed as a separate tile,
then we denote these tiles by 4x4x1.

In FIG. 4, the same notation is used for defocus blur, but
with a different meaning. Here, the lens has been divided into
2x2 smaller lens regions, and as before, there are four samples
per pixel. Again, indicated by the four layers. However, for
defocus blur, 4x4xn means that n layers regions are com-
pressed together as a tile.

Referring to FIG. 2, the sequence 20 may be implemented
in software, firmware and/or hardware. In software and firm-
ware embodiments, it may be implemented by computer
executed instructions stored in one or more non-transitory
computer readable media such as magnetic, optical or semi-
conductor storages. For example the control shown in FIG. 1
may be used for this purpose in some embodiments.

The sequence 20 begins by providing a triangle to a raster-
izer as indicated at block 22. The rasterizer set-up computes
depth function coefficients which are passed directly to the
tile depth compressor, as indicated in block 24. The stochastic
rasterizer computes, for each tile, per sample coverage in
depth, as indicated at block 26. Then the tile depth compres-
sor takes coverage mask, per sample depth and depth function
coefficients as inputs. If the sample depths can be represented
by a depth function, the tile is stored in a compressed form as
indicated in block 28.

For culling per 8x8x1 tiles, we store z,,,,, and 7, of the tile
using 30 bits each in order to do Z-max culling and Z-min
culling. In addition to the min and max values, we also allo-
cated one bit per group of 16 samples, or one cache line worth
ofuncompressed samples, to indicate whether all of them are
cleared. This sums to 4 clear bits per 8x8x 1 tile, and so, 64 bits
are needed in total per 8x8x1 tile for culling and clear bits.

The tile table, which is accessed through a small cache or
stored in an on-chip memory, stores a tile header for each tile.
In one embodiment, the tile header may store four bits, where
one combination (0000b) indicates that the tile is stored
uncompressed, while the remaining 15 combinations are used
to indicate different compression modes. These four bits may
use a different tile size compared to the culling tile size
because the algorithms usually perform quite differently

US 9,111,392 B2

9

depending on which tile size is used. For example, for depth
offset compression algorithms, a smaller tile size is usually
advantageous, while larger tile sizes may be better for gener-
alized plane encoding (GPE), which is the method presented
in this patent application.

One implementation of the generalized plane encoder is as
follows. For the motion blur encoder, we let the rasterizer
forward information about the type of motion applied to each
triangle. The three different types of motion that we support
are static (no motion), only translation, and arbitrary linear
per-vertex motion. In addition, the rasterizer forwards a cov-
erage mask, which indicates which sample positions are
inside the triangle. The depth is evaluated for these samples,
and depth testing is performed. The depth functions of any
previously drawn triangles are removed if their sample indi-
ces are covered by the incoming triangle’s coverage mask.
The depth of field encoder works in exactly the same way,
except that there are no special types for defocus blur that are
forwarded. It should be noted that our method also works for
motion blur and depth of field at the same time. However, in
this case, the most compact representation is simply to store
(x,y,w) per vertex at both time 0 and time 1 for all three
vertices of a triangle. While the representation is not opti-
mized, the algorithm works and provides the same advan-
tages as described above.

A new triangle can be added to the compressed represen-
tation as follows. A triangle may be rasterized to each covered
tile on screen to obtain its per-sample coverage and depth
values. Within each tile, the depth test is performed by
decompressing the compact representation (to obtain the
stored depth values for each covered sample). If any sample
passes the depth test, the compressed representation is
updated by adding the depth function coefficient for the cur-
rent triangle and update the bitmask. If no sample passes the
depthtest, the current compressed representation and bitmask
is not updated.

Below, we discuss the case of depth functions for the case
of simultaneous motion blur and depth of field. In contrast to
the case of only motion blur or only depth of field, the number
of coefficients to store the depth function as a function of (x,
y, u, v, t) is larger than simply storing the three triangle
vertices as t=0 and t=1. Therefore, we do not explicitly derive
and simplify the depth function on this form, but work with
the vertex data directly.

One way of representing the depth function for the case of
simultaneous motion blur and depth of field is to simply store
the three triangle vertices at t=0, denoted g,, and t=1, denoted
r,. When visiting a tile, the depth value for a given sample can
then be obtained from this data by:

1. First evaluate the vertex positions for the sample’s (u, v,

t) position, e.g., p,(u,v,t)=(1-t)q,+td +c,(t)(u, Ev, 0)

2. Use these vertex positions to derive a static depth plane

equation on the form d(x,y)=Ax+By+C

3. Evaluate the depth plane equation for the sample’s (X, y)

position

The storage cost for this depth function representation is
2x3x4=24 scalar values, which can be reduced to 2x3x3=18
scalar values if the z-mapping of the projection matrix is
known, i.e., 7,727 .., +b, W_1,,7Z..,,,- As previously shown,
if we derive and simplify the depth function for the case of
simultaneous motion blur and depth of field, is can be repre-
sented with 25 scalar values, which is more expensive in
terms of storage.

FIG. 5 illustrates an embodiment of a system 300. In
embodiments, system 300 may be a media system although
system 300 is not limited to this context. For example, system
300 may be incorporated into a personal computer (PC),

10

15

20

25

30

35

40

45

50

55

60

65

10

laptop computer, ultra-laptop computer, tablet, touch pad,
portable computer, handheld computer, palmtop computer,
personal digital assistant (PDA), cellular telephone, combi-
nation cellular telephone/PDA, television, smart device (e.g.,
smart phone, smart tablet or smart television), mobile internet
device (MID), messaging device, data communication
device, and so forth.

In embodiments, system 300 comprises a platform 302
coupled to a display 320. Platform 302 may receive content
from a content device such as content services device(s) 330
or content delivery device(s) 340 or other similar content
sources. A navigation controller 350 comprising one or more
navigation features may be used to interact with, for example,
platform 302 and/or display 320. Each of these components is
described in more detail below.

In embodiments, platform 302 may comprise any combi-
nation of a chipset 305, processor 310, memory 312, storage
314, graphics subsystem 315, applications 316 and/or radio
318. Chipset 305 may provide intercommunication among
processor 310, memory 312, storage 314, graphics subsystem
315, applications 316 and/or radio 318. For example, chipset
305 may include a storage adapter (not depicted) capable of
providing intercommunication with storage 314.

Processor 310 may be implemented as Complex Instruc-
tion Set Computer (CISC) or Reduced Instruction Set Com-
puter (RISC) processors, x86 instruction set compatible pro-
cessors, multi-core, or any other microprocessor or central
processing unit (CPU). In embodiments, processor 310 may
comprise dual-core processor(s), dual-core mobile pro-
cessor(s), and so forth.

Memory 312 may be implemented as a volatile memory
device such as, but not limited to, a Random Access Memory
(RAM), Dynamic Random Access Memory (DRAM), or
Static RAM (SRAM).

Storage 314 may be implemented as a non-volatile storage
device such as, but not limited to, a magnetic disk drive,
optical disk drive, tape drive, an internal storage device, an
attached storage device, flash memory, battery backed-up
SDRAM (synchronous DRAM), and/or a network accessible
storage device. In embodiments, storage 314 may comprise
technology to increase the storage performance enhanced
protection for valuable digital media when multiple hard
drives are included, for example.

Graphics subsystem 315 may perform processing of
images such as still or video for display. Graphics subsystem
315 may be a graphics processing unit (GPU) or a visual
processing unit (VPU), for example. An analog or digital
interface may be used to communicatively couple graphics
subsystem 315 and display 320. For example, the interface
may be any of a High-Definition Multimedia Interface, Dis-
playPort, wireless HDMI, and/or wireless HD compliant
techniques. Graphics subsystem 315 could be integrated into
processor 310 or chipset 305. Graphics subsystem 315 could
be a stand-alone card communicatively coupled to chipset
305.

The graphics and/or video processing techniques described
herein may be implemented in various hardware architec-
tures. For example, graphics and/or video functionality may
be integrated within a chipset. Alternatively, a discrete graph-
ics and/or video processor may be used. As still another
embodiment, the graphics and/or video functions may be
implemented by a general purpose processor, including a
multi-core processor. In a further embodiment, the functions
may be implemented in a consumer electronics device.

Radio 318 may include one or more radios capable of
transmitting and receiving signals using various suitable
wireless communications techniques. Such techniques may

US 9,111,392 B2

11

involve communications across one or more wireless net-
works. Exemplary wireless networks include (but are not
limited to) wireless local area networks (WLANs), wireless
personal area networks (WPANs), wireless metropolitan area
network (WMANSs), cellular networks, and satellite net-
works. In communicating across such networks, radio 318
may operate in accordance with one or more applicable stan-
dards in any version.

In embodiments, display 320 may comprise any television
type monitor or display. Display 320 may comprise, for
example, a computer display screen, touch screen display,
video monitor, television-like device, and/or a television. Dis-
play 320 may be digital and/or analog. In embodiments, dis-
play 320 may be aholographic display. Also, display 320 may
be a transparent surface that may receive a visual projection.
Such projections may convey various forms of information,
images, and/or objects. For example, such projections may be
avisual overlay for a mobile augmented reality (MAR) appli-
cation. Under the control of one or more software applica-
tions 316, platform 302 may display user interface 322 on
display 320.

In embodiments, content services device(s) 330 may be
hosted by any national, international and/or independent ser-
vice and thus accessible to platform 302 via the Internet, for
example. Content services device(s) 330 may be coupled to
platform 302 and/or to display 320. Platform 302 and/or
content services device(s) 330 may be coupled to a network
360 to communicate (e.g., send and/or receive) media infor-
mation to and from network 360. Content delivery device(s)
340 also may be coupled to platform 302 and/or to display
320.

In embodiments, content services device(s) 330 may com-
prise a cable television box, personal computer, network,
telephone, Internet enabled devices or appliance capable of
delivering digital information and/or content, and any other
similar device capable of unidirectionally or bidirectionally
communicating content between content providers and plat-
form 302 and/display 320, via network 360 or directly. It will
be appreciated that the content may be communicated unidi-
rectionally and/or bidirectionally to and from any one of the
components in system 300 and a content provider via network
360. Examples of content may include any media information
including, for example, video, music, medical and gaming
information, and so forth.

Content services device(s) 330 receives content such as
cable television programming including media information,
digital information, and/or other content. Examples of con-
tent providers may include any cable or satellite television or
radio or Internet content providers. The provided examples
are not meant to limit embodiments of the invention.

In embodiments, platform 302 may receive control signals
from navigation controller 350 having one or more navigation
features. The navigation features of controller 350 may be
used to interact with user interface 322, for example. In
embodiments, navigation controller 350 may be a pointing
device that may be a computer hardware component (specifi-
cally human interface device) that allows a user to input
spatial (e.g., continuous and multi-dimensional) data into a
computer. Many systems such as graphical user interfaces
(GUI), and televisions and monitors allow the user to control
and provide data to the computer or television using physical
gestures.

Movements of the navigation features of controller 350
may be echoed on a display (e.g., display 320) by movements
of a pointer, cursor, focus ring, or other visual indicators
displayed on the display. For example, under the control of
software applications 316, the navigation features located on

20

25

40

45

50

12

navigation controller 350 may be mapped to virtual naviga-
tion features displayed on user interface 322, for example. In
embodiments, controller 350 may not be a separate compo-
nent but integrated into platform 302 and/or display 320.
Embodiments, however, are not limited to the elements or in
the context shown or described herein.

In embodiments, drivers (not shown) may comprise tech-
nology to enable users to instantly turn on and off platform
302 like a television with the touch of a button after initial
boot-up, when enabled, for example. Program logic may
allow platform 302 to stream content to media adaptors or
other content services device(s) 330 or content delivery
device(s) 340 when the platform is turned “off.” In addition,
chip set 305 may comprise hardware and/or software support
for 5.1 surround sound audio and/or high definition 7.1 sur-
round sound audio, for example. Drivers may include a
graphics driver for integrated graphics platforms. In embodi-
ments, the graphics driver may comprise a peripheral com-
ponent interconnect (PCI) Express graphics card.

In various embodiments, any one or more of the compo-
nents shown in system 300 may be integrated. For example,
platform 302 and content services device(s) 330 may be inte-
grated, or platform 302 and content delivery device(s) 340
may be integrated, or platform 302, content services device(s)
330, and content delivery device(s) 340 may be integrated, for
example. In various embodiments, platform 302 and display
320 may be an integrated unit. Display 320 and content ser-
vice device(s) 330 may be integrated, or display 320 and
content delivery device(s) 340 may be integrated, for
example. These examples are not meant to limit the invention.

In various embodiments, system 300 may be implemented
as a wireless system, a wired system, or a combination of
both. When implemented as a wireless system, system 300
may include components and interfaces suitable for commu-
nicating over a wireless shared media, such as one or more
antennas, transmitters, receivers, transceivers, amplifiers, fil-
ters, control logic, and so forth. An example of wireless
shared media may include portions of a wireless spectrum,
such as the RF spectrum and so forth. When implemented as
a wired system, system 300 may include components and
interfaces suitable for communicating over wired communi-
cations media, such as input/output (I/O) adapters, physical
connectors to connect the I/O adapter with a corresponding
wired communications medium, a network interface card
(NIC), disc controller, video controller, audio controller, and
so forth. Examples of wired communications media may
include a wire, cable, metal leads, printed circuit board
(PCB), backplane, switch fabric, semiconductor material,
twisted-pair wire, co-axial cable, fiber optics, and so forth.

Platform 302 may establish one or more logical or physical
channels to communicate information. The information may
include media information and control information. Media
information may refer to any data representing content meant
for a user. Examples of content may include, for example,
data from a voice conversation, videoconference, streaming
video, electronic mail (“email”) message, voice mail mes-
sage, alphanumeric symbols, graphics, image, video, text and
so forth. Data from a voice conversation may be, for example,
speech information, silence periods, background noise, com-
fort noise, tones and so forth. Control information may refer
to any data representing commands, instructions or control
words meant for an automated system. For example, control
information may be used to route media information through
a system, or instruct a node to process the media information
in a predetermined manner. The embodiments, however, are
not limited to the elements or in the context shown or
described in FIG. 5.

US 9,111,392 B2

13

As described above, system 300 may be embodied in vary-
ing physical styles or form factors. FIG. 6 illustrates embodi-
ments of a small form factor device 400 in which system 300
may be embodied. In embodiments, for example, device 400
may be implemented as a mobile computing device having
wireless capabilities. A mobile computing device may refer to
any device having a processing system and a mobile power
source or supply, such as one or more batteries, for example.

As described above, examples of a mobile computing
device may include a personal computer (PC), laptop com-
puter, ultra-laptop computer, tablet, touch pad, portable com-
puter, handheld computer, palmtop computer, personal digi-
tal assistant (PDA), cellular telephone, combination cellular
telephone/PDA, television, smart device (e.g., smart phone,
smart tablet or smart television), mobile internet device
(MID), messaging device, data communication device, and
so forth.

Examples of a mobile computing device also may include
computers that are arranged to be worn by a person, such as a
wrist computer, finger computer, ring computer, eyeglass
computer, belt-clip computer, arm-band computer, shoe com-
puters, clothing computers, and other wearable computers. In
embodiments, for example, a mobile computing device may
be implemented as a smart phone capable of executing com-
puter applications, as well as voice communications and/or
data communications. Although some embodiments may be
described with a mobile computing device implemented as a
smart phone by way of example, it may be appreciated that
other embodiments may be implemented using other wireless
mobile computing devices as well. The embodiments are not
limited in this context.

The processor 310 may communicate with a camera 322
and a global positioning system sensor 320, in some embodi-
ments. A memory 312, coupled to the processor 310, may
store computer readable instructions for implementing the
sequences shown in FIGS. 1 and 2 in software and/or firm-
ware embodiments. Particularly the sequences may be imple-
mented by one or more non-transitory storage devices storing
computer implemented instructions.

As shown in FIG. 6, device 400 may comprise a housing
402, a display 404, an input/output (I/O) device 406, and an
antenna 408. Device 400 also may comprise navigation fea-
tures 412. Display 404 may comprise any suitable display
unit for displaying information appropriate for a mobile com-
puting device. I/O device 406 may comprise any suitable I/O
device for entering information into a mobile computing
device. Examples for 1/O device 406 may include an alpha-
numeric keyboard, a numeric keypad, a touch pad, input keys,
buttons, switches, rocker switches, microphones, speakers,
voice recognition device and software, and so forth. Informa-
tion also may be entered into device 400 by way of micro-
phone. Such information may be digitized by a voice recog-
nition device. The embodiments are not limited in this
context.

Various embodiments may be implemented using hard-
ware elements, software elements, or a combination of both.
Examples of hardware elements may include processors,
microprocessors, circuits, circuit elements (e.g., transistors,
resistors, capacitors, inductors, and so forth), integrated cir-
cuits, application specific integrated circuits (ASIC), pro-
grammable logic devices (PLD), digital signal processors
(DSP), field programmable gate array (FPGA), logic gates,
registers, semiconductor device, chips, microchips, chip sets,
and so forth. Examples of software may include software
components, programs, applications, computer programs,
application programs, system programs, machine programs,
operating system software, middleware, firmware, software

10

15

20

25

30

35

40

45

50

55

60

14

modules, routines, subroutines, functions, methods, proce-
dures, software interfaces, application program interfaces
(API), instruction sets, computing code, computer code, code
segments, computer code segments, words, values, symbols,
orany combination thereof. Determining whether an embodi-
ment is implemented using hardware elements and/or soft-
ware elements may vary in accordance with any number of
factors, such as desired computational rate, power levels, heat
tolerances, processing cycle budget, input data rates, output
data rates, memory resources, data bus speeds and other
design or performance constraints.

One or more aspects of at least one embodiment may be
implemented by representative instructions stored on a
machine-readable medium which represents various logic
within the processor, which when read by a machine causes
the machine to fabricate logic to perform the techniques
described herein. Such representations, known as “IP cores”
may be stored on a tangible, machine readable medium and
supplied to various customers or manufacturing facilities to
load into the fabrication machines that actually make the logic
O Processor.

The foregoing description of one or more implementations
provides illustration and description, but is not intended to be
exhaustive or to limit the scope of the invention to the precise
form disclosed. Modifications and variations are possible in
light of the above teachings or may be acquired from practice
of various implementations of the invention.

The graphics processing techniques described herein may
be implemented in various hardware architectures. For
example, graphics functionality may be integrated within a
chipset. Alternatively, a discrete graphics processor may be
used. As still another embodiment, the graphics functions
may be implemented by a general purpose processor, includ-
ing a multicore processor.

References throughout this specification to “one embodi-
ment” or “an embodiment” mean that a particular feature,
structure, or characteristic described in connection with the
embodiment is included in at least one implementation
encompassed within the present invention. Thus, appearances
of the phrase “one embodiment” or “in an embodiment” are
not necessarily referring to the same embodiment. Further-
more, the particular features, structures, or characteristics
may be instituted in other suitable forms other than the par-
ticular embodiment illustrated and all such forms may be
encompassed within the claims of the present application.

While the present invention has been described with
respect to a limited number of embodiments, those skilled in
the art will appreciate numerous modifications and variations
therefrom. It is intended that the appended claims cover all
such modifications and variations as fall within the true spirit
and scope of this present invention.

What is claimed is:

1. A computer executed method comprising:

computing, using a hardware processor depth function

coefficients for triangles undergoing at least one of
motion blur or depth of field;

for each of a plurality of tiles computing, using a hardware

processor, per sample coverage; and

using the per sample coverage in a hardware tile depth

compressor to store compressed depths for samples of a
tile.

2. The method of claim 1 including computing using a
rasterizer.

3. The method of claim 2 including computing using a
software rasterizer.

4. The method of claim 2 including preparing a represen-
tation of a depth function directly from a rasterizer set-up.

US 9,111,392 B2

15

5. The method of claim 2 including forwarding information
about motion type from the rasterizer to the compressor.

6. The method of claim 1 including representing a depth
function with only 16 coefficients for motion blur.

7. The method of claim 1 including representing a depth
function with only 13 coefficients for depth of field.

8. The method of claim 1 including reducing the number of
depth function coefficients using a projection matrix.

9. The method of claim 1 including storing a tile header in
a tile table indicating a compression mode.

10. The method of claim 1 including adding a triangle to a
compressed representation by rasterizing the triangle to each
covered tile to obtain its per sample coverage and depth
values, performing a depth test within each tile and if any
sample passes the depth test, updating the compressed repre-
sentation.

11. The method of claim 1 including reducing the number
of depth function coefficients.

12. One or more non-transitory computer readable media
storing instructions to perform a sequence comprising:

computing depth function coefficients for triangles under-

going at least one of motion blur or depth of field;

for each of a plurality of tiles computing per sample cov-

erage; and

using the per sample coverage in a tile depth compressor to

store compressed depths for samples of a tile.

13. The media of claim 12 said sequence further including
computing using a rasterizer.

14. The media of claim 13 said sequence further including
computing using a software rasterizer.

15. The media of claim 13 said sequence further including
preparing a representation of a depth function directly from a
rasterizer set-up.

16. The media of claim 13 said sequence further including
forwarding information about motion type from the rasterizer
to the compressor.

17. The media of claim 12 said sequence further including
representing a depth function with only 16 coefficients for
motion blur.

18. The media of claim 12 said sequence further including
representing a depth function with only 13 coefficients for
depth of field.

10

15

20

25

30

35

40

16

19. The media of claim 12 said sequence further including
reducing the number of depth function coefficients using a
projection matrix.

20. The media of claim 12 said sequence further including
storing a tile header in a tile table indicating a compression
mode.

21. The media of claim 12, said sequence further including
reducing the number of depth function coefficients.

22. An apparatus comprising:

a control to compute depth function coefficients for tri-
angles undergoing at least one of motion blur or depth of
field, compute per sample coverage for each of a plural-
ity of tiles, and use the per sample coverage in a tile
depth compressor to store compressed depths for
samples of a tile;

a rasterizer coupled to said control; and

a compressor coupled to said control.

23. The apparatus of claim 22 wherein said rasterizer is a
software rasterizer.

24. The apparatus of claim 22, said control to prepare a
representation of a depth function directly from a rasterizer
set-up.

25. The apparatus of claim 22, said rasterizer to represent a
depth function with only 16 coefficients for motion blur.

26. The apparatus of claim 22, said rasterizer to represent a
depth function with only 13 coefficients for depth of field.

27. The apparatus of claim 22, said rasterizer to reduce the
number of depth function coefficients using a projection
matrix.

28. The apparatus of claim 22, said control to store a tile
header in a tile table indicating a compression mode.

29. The apparatus of claim 22, said rasterizer to reduce the
number of depth function coefficients.

30. A method comprising:

for each of a plurality of tiles, for an overlapping triangle
undergoing motion blur and depth of field, using a hard-
ware processor to store the triangle vertex positions rep-
resenting the triangle at two different times; and

using these vertex positions to compute per sample cover-
age in a hardware tile depth compressor to store com-
pressed depths for samples of a tile.

#* #* #* #* #*

